Existence and nonexistence of positive solutions of semilinear elliptic equation with inhomogeneous strong Allee effect

نویسنده

  • Jun-ping SHI
چکیده

In this paper, we study a semilinear elliptic equation defined on a bounded smooth domain. This type of problem arises from the study of spatial ecology model, and the growth function in the equation has a strong Allee effect and is inhomogeneous. We use variational methods to prove that the equation has at least two positive solutions for a large parameter if it satisfies some appropriate conditions. We also prove some nonexistence results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On positive solutions for a class of nonlocal problems

In this paper, we study a class of nonlocal semilinear elliptic problems with inhomogeneous strong Allee effect. By means of variational approach, we prove that the problem has at least two positive solutions for large λ under suitable hypotheses about nonlinearity. We also prove some nonexistence results. In particular, we give a positive answer to the conjecture of Liu-Wang-Shi.

متن کامل

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Existence and Multiplicity of Positive Solutions to a Quasilinear Elliptic Equation with Strong Allee Effect Growth Rate

In this paper we consider a p-Laplacian equation with strong Allee effect growth rate and Dirichlet boundary condition { div(|∇u|p−2∇u) + λf(x, u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω, (Pλ) where Ω is a bounded smooth domain in R for N ≥ 1, p > 1, and λ is a positive parameter. By using variational methods and a suitable truncation technique, we prove that problem (Pλ) has at least two positive solutions ...

متن کامل

Existence and Nonexistence of Positive Solutions for Singular Semilinear Elliptic Boundary Value Problems

In this paper we study existence of positive solutions to singular elliptic boundary value problems involving divergence terms in general domains. By constructing suitable upper and lower solutions and making comparison, we obtain suucient conditions for existence and nonexistence of solutions. We also study a concrete example to show that the conditions imposed on parameters appearing in the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006